A facile two-step hydrothermal route for the synthesis of γ -Fe₂O₃ nanocrystals and their magnetic properties

Hongliang Zhu · Deren Yang · Luming Zhu · Hong Yang Dalai Jin · Kuihong Yao

Received: 28 January 2007 / Accepted: 29 May 2007 / Published online: 27 July 2007 Springer Science+Business Media, LLC 2007

Abstract This paper proposes a facile two-step hydrothermal route for the synthesis of maghemite (γ -Fe₂O₃) nanocrystals. The synthesis route included two steps: (i) hydrothermal synthesis of $Fe₃O₄$ nanocrystals, and (ii) hydrothermal oxidation of the $Fe₃O₄$ nanocrystals to their γ -Fe₂O₃ counterpart. Phase transition from γ -Fe₂O₃ to hematite was studied by in situ XRD; the γ -Fe₂O₃ nanocrystals exhibited enhanced phase transition temperature $($ >600 °C). The magnetization curves revealed that the γ -Fe₂O₃ nanocrystals showed ferromagnetic behavior with high saturation magnetization of 68 emu/g at room temperature.

Introduction

Iron(III) oxide has four polymorphs, namely, hematite $(\alpha$ -Fe₂O₃), maghemite (γ -Fe₂O₃), β -Fe₂O₃ and ϵ -Fe₂O₃ [\[1](#page-4-0)]. Among these polymorphs, γ -Fe₂O₃ is an excellent ferromagnetic oxide that has been widely used as magnetic recording materials for the long period of time [\[2](#page-4-0), [3\]](#page-4-0). As the density of magnetic recording media increases, it is technologically important to study the synthesis and properties of γ -Fe₂O₃ nanocrystals. In addition, nanocrystalline γ -Fe₂O₃ has promising applications in ferrofluids

H. Zhu \cdot D. Yang (\boxtimes) State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027, P.R. China e-mail: mseyang@zju.edu.cn

H. Zhu (\boxtimes) \cdot L. Zhu \cdot H. Yang \cdot D. Jin \cdot K. Yao Center of Materials Engineering, Zhejiang Sci-Tech University, Xiasha University Town, Hangzhou 310018, P.R. China e-mail: zhuhl@zstu.edu.cn

[\[4](#page-4-0), [5](#page-4-0)], magnetic refrigeration [\[6](#page-4-0)], magneto-optical devices [\[7](#page-4-0)], controlled drug delivery [[8\]](#page-4-0), bioprocessing [\[1](#page-4-0), [9](#page-4-0)], medical diagnosis [[10,](#page-4-0) [11\]](#page-4-0), and gas sensors [[12\]](#page-4-0). Due to the chemical stability, biocompatibility and heating ability of γ -Fe₂O₃ nanocrystals in an alternating field, ferrofluids of γ -Fe₂O₃ nanocrystals also can be used for magnetic fluid hyperthermia (MFH) in tumour treatments [\[13](#page-4-0), [14\]](#page-4-0).

The usual technique to synthesize γ -Fe₂O₃ powders is still the thermal oxidation of magnetite $(Fe₃O₄)$, which includes two steps. First, $Fe₃O₄$ powders are synthesized by coprecipitation of ferrous and ferric cations in alkaline solution. Then, the $Fe₃O₄$ powders are oxidized to their γ -Fe₂O₃ counterpart between 100 °C and 250 °C in air. In recent years, a variety of processes have been employed to prepare γ -Fe₂O₃ nanocrystals, including solvothermal reduction $[15]$ $[15]$, thermal decomposition $[16]$ $[16]$, reduction– oxidation method [\[17](#page-4-0)], high temperature aging methods [\[18](#page-4-0)], ball-milling [[19\]](#page-4-0), coprecipitation technique [\[20](#page-4-0)], reverse micelle technique [[21\]](#page-4-0), sol–gel mediated reaction [\[22](#page-4-0)] and so on.

Hydrothermal method is a powerful technique in synthesizing metal oxide nanostructures, but hydrothermal synthesis of γ -Fe₂O₃ nanocrystals is still less successful. In usual hydrothermal processes, nanocrystalline hematite $(\alpha$ -Fe₂O₃) instead of γ -Fe₂O₃ can be obtained because α -Fe₂O₃ is the most thermodynamically stable ferric oxide [\[23](#page-4-0), [24\]](#page-4-0). Chen and Xu have reported that γ -Fe₂O₃ nanoparticles could be hydrothermally synthesized at 140 \degree C for $7-10$ days using 2-methoxyethanol (MOE)-H₂O mixed solvent and acetylacetone(Hacac) as additive from iron(II) 2-methoxyethoxides $(Fe(MOEO)_2)$ [\[25](#page-4-0)]. However, this hydrothermal synthesis process is troublesome. In contrast, hydrothermal synthesis of $Fe₃O₄$ nanocrystals have been reported by many literatures [[26–30\]](#page-4-0). Considering the above points, we propose in this paper a facile two-step hydrothermal route for the synthesis of γ -Fe₂O₃ nanocrystals, which includes hydrothermal synthesis of $Fe₃O₄$ nanocrystals using hydrazine hydrate as an alkaline mineralizer and subsequent hydrothermal oxidation of the Fe₃O₄ nanocrystals to its γ -Fe₂O₃ counterpart.

Experimental procedure

The starting reagents used in this work were analyticalgrade ferrous sulfate hydrate (FeSO₄.7H₂O), hydrazine hydrate 85% and hydrogen peroxide (H_2O_2) with a volume concentration of 30%. At the first stage, 1.779 g of FeS- $O₄·7H₂O$ and 0.753 g of hydrazine hydrate 85% were added to 160 mL of deionized water under vigorous magnetic stirring. After 10 min of stirring, the above solution was transferred into a Teflon-lined stainless steel autoclave (capacity 200 ml) and sealed. The autoclave was heated at 150 \degree C for 12 h and then cooled down naturally to room temperature. The black $Fe₃O₄$ nanocrystals was collected by centrifugation. At the second stage, the $Fe₃O₄$ nanocrystals, 10 ml of H_2O_2 and 150 ml of deionized water were introduced into the Teflon-lined stainless steel autoclave and sealed. Once again, the autoclave was heated at 150 \degree C for 12 h and then cooled down naturally to room temperature. Finally, the brown γ -Fe₂O₃ nanocrystals were collected by centrifugation and washing with distilled water and alcohol for several times, and dried at 60 \degree C for 24 h in air.

Phase identification of the products was carried out by x-ray diffraction (XRD) using a Thermo ARL XTRA x-ray diffractometer with Cu K α radiation ($\lambda = 1.54178$ Å). The chemical compositions of the Fe₃O₄ and γ -Fe₂O₃ nanocrystals were analyzed by an Oxford Instrument's INCA energy-dispersive spectrometer (EDS). In situ high-temperature XRD study of the $\gamma \rightarrow \alpha$ -Fe₂O₃ phase transition was performed in a high-temperature attachment of the x-ray diffractometer. The sample was placed on a Pt stage and heated in air. In situ XRD patterns were obtained at different temperatures, i.e. 30, 100, 200, 300, 400, 500, 600, 650, 700, 750 and 800 °C. XRD scanning was started when the sample was heated at a temperature for 20 min. The morphologies of the Fe₃O₄ and γ -Fe₂O₃ nanocrystals were observed by a JEOL JEM 200 CX transmission electron microscope (TEM) operated at 160 kV. The magnetic properties were measured on a Quantum Design Physical Property Measurement System (PPMS-9).

Results and discussion

The black product hydrothermally synthesized at the first step and the brown product hydrothermally oxidized at the second step were characterized by XRD. Their XRD patterns are shown in Figs. 1a, b, respectively. Analyzed by the Thermo ARL WinXRD software package, all the peaks of the XRD pattern of the black product (shown in Fig. 1a) are in good agreement with the JCPDS data (no. 79-0419) of the cubic Fe₃O₄ with the lattice constant $a = 8.40$ Å. The brown product can be indexed to cubic γ -Fe₂O₃ (JCPDS no. 39-1346) with the lattice constant $a = 8.35$ Å. No XRD peaks of impurities such as α -Fe₂O₃ phase were found in Fig. 1b. Maghemite with cubic structure is closely related to the structure of inverse spinel $Fe₃O₄$, but it differs from the latter by the presence of vacancies distributed on the cation sublattice [\[31](#page-4-0)]. The Fe₃O₄ and γ -Fe₂O₃ nanocrystals, consequently, show almost similar XRD patterns (see Fig. 1). Fortunately, modern high-resolution x-ray diffractometers have enough high precision to distinguish between Fe₃O₄ and γ -Fe₂O₃. The inset of Fig. 1 clearly shows the amplified (511) and (440) peaks of the Fe₃O₄ and γ -Fe₂O₃ nanocrystals, in which obvious peak difference can be found. In addition, the chemical compositions of the Fe₃O₄ and γ -Fe₂O₃ nanocrytals were analyzed by EDS. Their EDS spectra and results of quantitative analysis by the Oxford Instruments INCA software package (INCA Energy 200) are shown in Fig. [2a](#page-2-0) and b, respectively. As shown in Fig. [2,](#page-2-0) strong peaks for Fe and O can be found in the spectra. The results of quantitative analysis (see the insets of Fig. [2\)](#page-2-0) reveals that the O/Fe atomic ratios of the Fe₃O₄ and γ -Fe₂O₃ nanocrytals are 1.30 and 1.52, respectively. The values are consistent

Fig. 1 XRD patterns of the products: (a) $Fe₃O₄$ nanocrystals, and (b) γ -Fe₂O₃ nanocrystals

Fig. 2 EDS spectra and results of quantitative analysis: (a) $Fe₃O₄$ nanocrystals, and (b) γ -Fe₂O₃ nanocrystals

with the theoretical O/Fe atomic ratios of $Fe₃O₄$ (1.33) and γ -Fe₂O₃ (1.50). In a word, the black and brown products were Fe₃O₄ and γ -Fe₂O₃, respectively.

It is well known that cubic γ -Fe₂O₃ is only a metastable, low temperature $Fe₂O₃$ modification and that the phase transition to rhombohedral α -Fe₂O₃ occurs at temperature range of $200-700$ °C [32-34]. To meet technological challenges for memory devices, the enhanced phase transition temperature implies better applicability of γ -Fe₂O₃ even at high temperature. There have been many efforts to stabilize γ -Fe₂O₃ against transformation to α -Fe₂O₃ at en-hanced temperatures [[34–36\]](#page-4-0). In contrast to other thermal analysis techniques such as DSC, DTA and TGA, in situ XRD is a more powerful tool to study phase transition. In this work, the $\gamma \rightarrow \alpha$ -Fe₂O₃ phase transition was studied by in situ XRD. Figure 3 shows the in situ XRD patterns obtained at 30, 500, 600, 650, 700, 750 and 800 °C. As shown in Fig. 3, no XRD peaks of α -Fe₂O₃ were detected in the temperature range of 30–600 °C. When the γ -Fe₂O₃ sample was heated to 650 °C, the XRD peaks of α -Fe₂O₃ (JCPDS no. 33-0664) began to occur. Furthermore, the XRD peaks of the α -Fe₂O₃ became stronger and stronger with increasing temperature. For instance, the (104) peak at around 33.1°, the strongest peak in the standard card of α -Fe₂O₃ (JCPDS no. 33-0664) didn't occure until the γ -Fe₂O₃ sample was heated to 650 °C. In subsequent heating to 800 \degree C, the (104) peak became increasingly strong, meaning the phase transition was induced. Based on above results, it can been concluded that the γ -Fe₂O₃

Fig. 3 In situ XRD patterns of the phase transition from maghemite (γ -Fe₂O₃) to hematite (α -Fe₂O₃)

nanocrytals synthesized via the two-step hydrothermal route exhibited high phase transition temperature (>600 °C), while the reported temperature of the $\gamma \rightarrow$ α -Fe₂O₃ transition ranges from 200 C to 500 °C for nanoparticles [[32\]](#page-4-0). We attributed the high transition temperature $($ >600 °C) to the particular hydrothermal oxidation process.

The morphologies of the Fe₃O₄ and γ -Fe₂O₃ nanocrystals were observed by TEM; their typical TEM images are shown in Fig. [4.](#page-3-0) Figure [4a](#page-3-0) shows the TEM image of the black $Fe₃O₄$ product, which reveals that the product is $Fe₃O₄$ nanocrystals with the diameter of ~70 nm. The TEM images of the γ -Fe₂O₃ product are shown in Figs. [4b](#page-3-0), c, which reveal that the γ -Fe₂O₃ product has the same morphology as that of the $Fe₃O₄$ nanocrystals. The inset of Fig. [4](#page-3-0)c shows the selected area electron diffraction (SAED) pattern of the γ -Fe₂O₃ nanocrystals. The d values corresponding to the two brightest rings (from the inner to the outer) are 2.10 Å and 1.28 Å , corresponding well to the {400} and {533} planes of the γ -Fe₂O₃ (JCPDS no. 39-1346), respectively. Furthermore, as shown in Fig. [4,](#page-3-0) the Fe₃O₄ and γ -Fe₂O₃ nanocrystals are well dispersive.

The magnetization curves of the Fe₃O₄ and γ -Fe₂O₃ nanocrystals are shown in Fig. [5.](#page-3-0) The related magnetic parameters are given in Table [1](#page-3-0). As shown in Fig. [4](#page-3-0), their magnetization curves measured at both 10 K and 300 K exhibit obvious hysteresis loop. The hysteresis loops is the

Fig. 4 (a) TEM image of the $Fe₃O₄$ nanocrystals, (b) the lowmagnification TEM image of γ -Fe₂O₃ nanocrystals, and (c) the magnified TEM image of the γ -Fe₂O₃ nanocrystals, the inset is the relative SEAD pattern

unique characteristic of the ferromagnetic behavior, meaning that the Fe₃O₄ and γ -Fe₂O₃ nanocrystals show typical ferromagnetic behavior at 10 Kand 300 K. Due to their high crystallinity, the γ -Fe₂O₃ nanocrystals show high saturation magnetization of 68 emu/g at 300 K, which is close to the theoretical saturation magnetization of 76 emu/ g for bulk γ -Fe₂O₃ at room temperature [[37\]](#page-4-0).

Conclusions

Maghemite (γ -Fe₂O₃) nanocrystals were successfully prepared via a facile two-step hydrothermal route. The synthesis route includes two steps: (i) hydrothermal synthesis of $Fe₃O₄$ nanocrystals, and (ii) hydrothermal oxidation of the Fe₃O₄ nanocrystals to its γ -Fe₂O₃

Fig. 5 Magnetization curves of the products measured at 10 K and 300 K: (a) Fe₃O₄ nanocrystals, and (b) γ -Fe₂O₃ nanocrystals

Table 1 Magnetic properties of the Fe₃O₄ and γ -Fe₂O₃ nanocrystals obtained with the PPMS

Product	Measuring temp. (K)	Saturation magnetization (emu/g)	Coercivity (Oe)
Fe ₃ O ₄	10	85	300
	300	77	100
ν -Fe ₂ O ₃	10	76	132
	300	68	76

Note: The masses of the Fe₃O₄ and γ -Fe₂O₃ samples measured with the PPMS are 8.0 and 82.4 mg, respectively

counterpart. The γ -Fe₂O₃ nanocrystals were well-crystallized and about 70 nm in diameter. In situ XRD study reveals the γ -Fe₂O₃ nanocrystals exhibit the enhanced phase transition temperature (>600 °C). The γ -Fe₂O₃ nanocrystals show ferromagnetic behavior with high saturation magnetization of 68 emu/g at room temperature.

Acknowledgments This work was supported by the Open Foundation Project of the State Key Lab of Silicon Materials (No. 200601). We also thank Prof Chunmu Feng (Zhejiang University) for PPMS measurements.

References

- 1. Zboril R, Mashlan M, Petridis D (2002) Chem Mater 14:969
- 2. Osmond WP (1952) Proc Phys Soc Lond B65:121
- 3. Osmond WP (1953) Proc Phys Soc Lond B66:265
- 4. Yu L, Yin Y, Mayers BT, Xia Y (2002) Nano Lett 2:183
- 5. Buioca CD, Iusan V, Stanci A, Zoller C (2002) J Magn Magn Mater 252:318
- 6. Tartaj P, Serna CJ (2002) Chem Mater 14:4396
- 7. Ortega D, Garitaonandia JS, Barrera-Solano C, Ramírez-del-Solar M, Blanco E, M Domínguez (2006) J Non-Cryst Solids 352:2801
- 8. Xu Z, Zeng Q, Lu G, Yu A (2006) Chem Eng Sci 61:1027
- 9. Bhatnagar SP, Rosensweig RE (1995) J Magn Magn Mater 149:198
- 10. Gupta AK, Gupta M (2005) Biomaterials 26:3995
- 11. Lu J, Yang S, Ng KM, Su CH, Yeh CS, Wu YN, Shieh DB (2006) Nanotechnology 17:5812
- 12. Jing Z, Wang Y, Wu S (2006) Sensor Actuat B Chem 113:177
- 13. Jordan A, Scholz R, Wust P, Schirra H, Schiestel T, Schmidt H, Felix R (1999) J Magn Magn Mater 194:185
- 14. Chan DCF, Kirpotin DB, Bunn JPA (1993) J Magn Magn Mater 122:374
- 15. Liu X, Fu S, Xiao H (2006) J Solid State Chem 179:1554
- 16. Rockenberger J, Scher EC, Alivisatos AP (1999) J Am Chem Soc 121:11595
- 17. Ni Y, Ge X, Zhang Z, Ye Q (2002) Chem Mater 14:1048
- 18. Hyeon T, Lee SS, Park J, Chung Y, Na B (2001) J Am Chem Soc 123:12798
- 19. Janot R, Guérard D (2002) J Alloy Comp 333:302
- 20. Lee S, Jeong J, Shin S, Kim J, Kim J (2004) J Magn Magn Mater 282:147
- 21. Mukadam MD, Yusuf SM, Sharma P, Kulshreshtha SK (2004) J Magn Magn Mater 272–276:1401
- 22. Woo K, Lee JHJ (2004) J Magn Magn Mater 272–276:e1155
- 23. Giri S, Samanta S, Maji S, Ganguli S, Bhaumik A (2005) J Magn Magn Mater 285:296
- 24. Kandori K, Ishikawa T (2004) J Colloid Interf Sci 272:246
- 25. Chen D, Xu R (1998) J Solid State Chem 137:185
- 26. Wang J, Sun J, Chen Q (2003) Mater Res Bull 38:1113
- 27. Lian S, Kang Z, Wang E, Jiang M, Hu C, Xu L (2003) Solid State
- Commun 127:605 28. Zheng Y, Cheng Y, Bao F, Wang Y (2006) Mater Res Bull 41:525
- 29. Wan J, Chen X, Wang Z, Yang X, Qian Y (2005) J Cryst Growth 276:571
- 30. Xuan S, Hao L, Jiang W, Gong X, Hu Y, Chen Z (2007) J Magn Magn Mater 308:210
- 31. Belin T, Guigue-Millot N, Caillot T, Aymes D, Niepce JC (2002) J Solid State Chem 163:459
- 32. Ennas G, Marongiu G, Musinu A, Falqui A, Ballirano P, Caminiti R (1999) J Mater Res 14:1570
- 33. Clark SM, Prilliman SG, Erdonmez CK, Alivisatos AP (2005) Nanotechnology 16:2813
- 34. Gnanaprakash G, Ayyappan S, Jayakumar T, Philip J, Raj B (2006) Nanotechnology 17:5851
- 35. Berry FJ, Greaves C, Helgason O, McManus J (1999) J Mater Chem 9:223
- 36. Lai J, Shafi KVPM, Loos K, Ulman A, Lee, Vogt T, Estournes C (2003) J Am Chem Soc 125:11470
- 37. Cullity BD (1972) Introduction to magnetic materials reading. Addison-Wesley, MA